
What is a CMS?
A content management system (CMS) is a software application that 

facilitates the creation, management (editing versioning, workflow, 

etc.) and publishing of content. Historically speaking, content 

management systems were invented so that non-technical content 

creators could quickly collaborate to produce and publish content 

without worrying about the technological complexities of displaying 

it in a web page or application. Today, CMS technology is just as 

important to developers as it is to non-technical content managers. 

The line between what is and what isn’t code has become more 

blurred than ever before, with most applications containing content 

today. Thus, developers are looking for solutions that allow them to 

craft and deploy content-enabled apps, websites, and other digital 

experiences quickly, without having to reinvent the wheel.

Headless CMS in a Nutshell
Headless CMS is a content management system that allows you to 

manage and access content from your applications using an API. 

Unlike traditional CMS solutions, headless CMS operates without 

the presentation layer (the “head,” or frontend) that would dictate 

how the content should be displayed. Instead, you control the 

presentation with your own code.

This not only enables a content-first approach when engaging your 

audience (as content creators no longer have to wait for development 

teams to catch up), but also means you can use the same content 

across multiple channels — websites, mobile apps, digital assistants, 

virtual reality, smart watches, etc. — making the headless CMS the 

ideal solution for a fast-paced, multichannel world.

Traditional (Coupled) vs. Headless vs. Hybrid CMS 
(Decoupled)
When choosing a new CMS, it’s important to understand the 

differences between various architectural approaches that different 

Getting Started With 
Headless CMS

BROUGHT TO YOU IN PARTNERSHIP WITH

1

WRITTEN BY SERGE HUBER
CTO AT JAHIA

CONTENTS

•  What is a CMS? 

•  Headless CMS in a Nutshell

•  Traditional (Coupled) vs. Headless  
    vs. Hybrid CMS (Decoupled)

•  Advantages and Disadvantages of 
    Headless CMSs

• The Importance of Separating Code 
   From Content

•  Can I Use Any Web CMS to Supply    
   Content to My Apps?

•  Headless CMS Project Examples

•  Putting a Headless CMS Into 
   Practice With Jahia

https://www.jahia.com/resources/reports/forrester-now-tech-web-content-management-systems-q4-2018


Visit us at www.jahia.com
Contact us at marketing@jahia.com

GENEVA | PARIS | LONDON | BOSTON | TORONTO

Stack-up & Stand Out
Unite Content, Data, and Applications into 
Your Stack to deliver a better customer experience. 

One hub for your content and customer data

Modernize legacy applications to deliver personalized 
online experiences

Flexible and continuous cross-channel management

Open and modular to fit your needs

Built to integrate with your best-in-class Martech stack

https://www.jahia.com/resources/reports/forrester-now-tech-web-content-management-systems-q4-2018


3 BROUGHT TO YOU IN PARTNERSHIP WITH

GETTING STARTED WITH HEADLESS CMS

products use. While this may look like a technical detail, it has a big 

impact on how the CMS will support your business goals now and in 

the future.

COUPLED/MONOLITHIC
In a coupled system, the underlying store for your content serves 

both authoring and delivery, and the process of making content live 

is typically a matter of setting a flag in the database.

HEADLESS
Headless CMS technology provides content to the presentation tier 

(or content consumer) as a service, typically via a RESTful interface in 

JSON or XML format. This is known as Content as a Service (CaaS).

A headless CMS can either be coupled or decoupled. Further, any 

CMS worth its salt today (decoupled or not) must support headless/

CaaS-based content delivery.

DECOUPLED/HEAD OPTIONAL
A decoupled system puts authoring and delivery in separate 

applications and potentially on separate infrastructure.

In a decoupled system, the process of making content live is 

completed through a publishing mechanism through which content 

is pushed from the authoring platform (and underlying content 

repository) to a content delivery infrastructure.

Advantages and Disadvantages of Headless CMSs
PROS

• The API makes the content available through any channel 

and on any device and allows you to include the CMS as part 

of your microservices architecture.

• You can write your websites or mobile applications using any 

programming language, your favorite tools, and your own 

development process.

• You have full control over the application lifecycle without 

having to interfere with any CMS code.

• It provides higher security and much easier scalability.

CONS
• A pure headless CMS doesn’t provide channel-specific 

support (especially for the web channel), which means 

developers may need to develop some web-specific 

functionality themselves.

• Marketers may be limited in what they can do with a pure 

headless CMS and rely more on developers for tasks like 

creating a landing page with a custom layout.

The Importance of Separating Code From Content
Developers have a strong handle on how to manage and deploy  

code assets. Yet, at some point in our application build, we’ve  all 

said,  “What about this text? What about these images? Where 

do these belong?” That’s pretty universal. Nearly every single 

application today has content in it. Be it a web app or a native app, 

it’s full of strings, images, icons, media, and other classes of content.

This content doesn’t really belong in our code base because it’s not 

code. These non-code assets make us as developers pretty uneasy. 

We know that at some point, a business user will ask us to change 

one of those strings and we’ll spend hours going through build and 

deploy cycles to handle a 30-second code change. We know that at 

some point, we’ll need to translate that content. We know that at 

some point, we’ll have to replace this UI with another one. We know 

all of these things — and we know leaving that content, even if it’s 

abstracted into a string table or a resource bundle, will come back to 

haunt us. No matter the abstraction, it’s part of the build. Developers 

must update it. Developers and systems folks must deploy it.

Smart developers separate code from content. They make sure that 

the content in the application is completely independent of the build 

and deploy cycle of the application itself. Where appropriate, they 

make sure non-technical business users can access and update the 

externalized content and publish changes at any time.

Can I Use Any Web CMS to Supply Content to          
My Apps?
Maybe. A lot depends on the app’s needs and the CMS. If the app is 

web-based — or if the app is a native app and the CMS supports APIs/

headless mode — then the answer is yes.



4 BROUGHT TO YOU IN PARTNERSHIP WITH

GETTING STARTED WITH HEADLESS CMS

But there’s a catch. In a few words, the ability to build the app against 

a CMS alone is not sufficient. Technology choices like programming 

language matter. Architecture matters. Making the right choices up 

front can save countless man hours and money spent on rework later.

TECHNOLOGY
Choose a CMS that aligns architecturally and ideally, one that aligns 

technology-wise with your existing technology investment and skills.

ARCHITECTURE
CMS technologies based on an RDBMS database and JCR repositories 

rely on clustering and replication. For content delivery, these systems 

rely on clustering and replication to handle high throughput.

For high transaction throughput applications, make sure you         

have a plan to properly scale the backend or consider a CMS with       

a “sharding” content delivery architecture.

Decoupled CMS platforms are more likely to support a shared 

nothing topology.

PURPOSE
Many CMS technologies were created to manage web pages. Make 

sure the CMS is either designed to manage the content you intend 

to input or that it’s appropriately content agnostic enough to meet    

your needs.

Headless CMS Project Examples
[Video] Creating React Single Page Application with React – This is 

a live coding session that was presented at Jahia Days 2018. View the 

recording: https://www.youtube.com/watch?v=6fbkH-EIkcs

[Video] Jahia Progressive Web Application Demo – Jahia makes 

headless content management simpler. See how in a quick demo: 

https://youtu.be/3ax7P5MLqmc

Putting a Headless CMS Into Practice With Jahia
Jahia is an open-source, Java-based Digital Experience Platform, 

which helps companies make the digital world simpler and 

accessible for everyone. In this section, we’ll walk you through the 

steps for building a single page application (SPA), progressive web 

app (PWA) from scratch using React and GraphQL.

Note: This tutorial assumes you have a Jahia installation up and 

running. If you don’t, we suggest you follow the First Steps With Jahia 

tutorial.

This Refcard shows you how to create a JavaScript application from 

scratch using React and GraphQL with Jahia as a headless content 

backend. The application displays a news list that Jahia’s headless 

content management UI manages: Content and Media Manager.

This Refcard also shows you how to create a standalone application 

that could be deployed in any website. If you’re interested in building 

a JavaScript application hosted in a Jahia module and deployed on 

a Jahia server, we recommend you use a different starting point. We 

provide a starter module project on GitHub here: https://github.com/

Jahia/dx-react-starter

After completing the tutorial, you’ll know how to:

• Create a React application.

• Use Content and Media Manager to add sample content to 

your app.

• Use GraphiQL to execute GraphQL queries and browser 

schema.

• Set up a basic Apollo Client to perform GraphQL queries to 

Jahia.

• Set up basic authorization.

• Style the app’s UI using React Material.

• Create a component that retrieves news objects from Jahia.

• Use GraphQL field aliases to improve property retrieval.

REQUIREMENTS AND TECHNOLOGIES USED
You will need the following tools for the tutorial:

• Node.js and npm

• Yarn

• DX 7.3 or Jahia 7.3.2 with the Content and Media Manager 

module installed

*Follow the First Steps With Jahia tutorial if you haven’t done this yet.

The tutorial uses the following technologies:

• Yarn

• Content and Media Manager

• React.js

• React Material

• GraphQL

• Apollo GraphQL client

• GraphiQL

• Jahia Security Filter

CREATING A WEB PROJECT IN JAHIA
Web projects are virtual web sites that you can edit in Jahia. One 

single Jahia server can host several web projects for different teams 

and can handle separate domain names if needed.

To create a web project:

1. In your dashboard, click My Web Projects in the left menu.

https://www.youtube.com/watch?v=6fbkH-EIkcs
https://youtu.be/3ax7P5MLqmc
https://academy.jahia.com/documentation/developer/dx/7.3/first-steps-with-jahia
https://github.com/Jahia/dx-react-starter
https://github.com/Jahia/dx-react-starter
https://nodejs.org/en/
https://yarnpkg.com/en/
https://academy.jahia.com/documentation/developer/dx/7.3/first-steps-with-jahia
https://yarnpkg.com/
https://academy.jahia.com/documentation/enduser/dx/7.3/using-jahia/using-and-customizing-content-and-media-manager
https://reactjs.org/
https://material-ui.com/
https://graphql.org/
https://www.apollographql.com/docs/react/
https://github.com/graphql/graphiql
https://github.com/Jahia/security-filter


5 BROUGHT TO YOU IN PARTNERSHIP WITH

GETTING STARTED WITH HEADLESS CMS

Then click Create New Web Project in the main pane. 

2. Create a project from a prepackaged site in the Use 

prepackaged project pane. Then select a project and          

click Next. 

3. Set the properties for your new web project and choose 

modules if needed in the dialogs that follow. This imports a 

prepackaged site with existing data to help you follow the 

tutorial. On average, an import takes 2-3 minutes. In the 

meantime, you can set up the front-end part of the project.

CREATING AND LAUNCHING THE STANDALONE JAVASCRIPT APP
First, use yarn create to generate a skeleton React application by 

executing the following commands on the command line:

yarn create react-app my-app

cd my-app

yarn start 

Then you’ll see the URL to which you can connect using your browser 

to view the compiled application. Then you can perform changes, 

which are immediately visible in your browser, offering fast compile-

deploy cycles.

Note: If some updates don’t work properly, just stop the server and 

restart it using  yarn start. That should fix most issues.

REACT MATERIAL
React Material styles the application’s look and feel using Google’s 

Material design components. This library provides an out-of-the-box 

React component library that makes building applications with a 

consistent look and feel much easier and faster.

To add React Material to the project:

1. Execute the following command on the command line at the 

root of the project:

yarn add @material-ui/core 

2. Update the media viewport property so it’s compatible with 

mobile devices:

<meta

        name=”viewport”

        content=”minimum-scale=1, initial-scale=1,

        width=device-width, shrink-to-fit=no”

/>

3. To add an AppBar in App.js, first add the imports at the top 

of the file:

import AppBar from ‘@material-ui/core/AppBar’;

import Toolbar from ‘@material-ui/core/Toolbar’;

import Typography from ‘@material-ui/core/Typography’;

import CssBaseline

    from ‘@material-ui/core/CssBaseline’;

import Grid from “@material-ui/core/Grid/Grid”;

import Paper from “@material-ui/core/Paper/Paper”;

4. Then replace the App class component generated by the 

create-react-app tool:

class App extends Component {

    render() {

        return (

            <div className=”App”>

            <header className=”App-header”>

                <img src={logo} className=”App-logo” 

                    alt=”logo”/>

                <p>

                    Edit <code>src/App.js</code> 

                    and save to reload.

                </p>

                <a

                    className=”App-link”

                    href=”https://reactjs.org”

                    target=”_blank”

                    rel=”noopener noreferrer”

                >

                    Learn React

                </a>

            </header>

        </div>

    );

    }

}

export default App; 

With:

const App = () => {

    return (

        <React.Fragment>

            <CssBaseline/>

            <AppBar position=”static” color=”default”>

Code continued on next page



6 BROUGHT TO YOU IN PARTNERSHIP WITH

GETTING STARTED WITH HEADLESS CMS

                <Toolbar>

                    <Typography variant=”title” 

                        color=”inherit”>

                        Companies

                    </Typography>

                </Toolbar>

            </AppBar>

            <Grid container>

                <Grid item xs={12}>

                    <Paper>

   {/*CompanyList placeholder*/}

                    </Paper>

                </Grid>

            </Grid>

        </React.Fragment>

    );

};

Note: This tutorial uses React functional components over class 

components (as demonstrated above).

The AppBar displays at the top of the page with the Companies title 

to prepare the layout for the CompanyList component.

PROJECT STRUCTURE
Before continuing, create the following folder structure in                 

your project:

|____src

| |____components

| | |____Company

| | |____CompanyList 

COMPONENT STRUCTURE
Following React best practices, this tutorial assumes that you 

create each component in a folder that identifies the component. 

For example, the CompanyList component is created under src/

components/CompanyList. By doing this, you can take advantage 

of using an index.js file to export your component as the default.

CREATING THE COMPANY COMPONENT
Next, create the Company component that will be rendered in          

the CompanyList.

1. Create a Company.jsx file under src/components/Company 

and add the following content:

import React from ‘react’;

import {withStyles} from “@material-ui/core“;

import CardMedia from “@material-ui/core/CardMedia“;

import CardContent from “@material-ui/core/ CardContent“;

import Card from “@material-ui/core/Card“;

import Typography from “@material-ui/core/Typography“;

const styles = {

  card: {

    maxWidth: 300,

    maxHeight: 350,

  },

  media: {

    height: ‘120px’,

  },

};

const Company = ({

  classes,

  title,

  description,

  image,

}) => {

  return (

    <Card className={classes.card}>

      <CardMedia

        className={classes.media}

        image={image}

        title=”Company”

      />

      <CardContent>

        <Typography component=”h1” variant=”display1”>

          Company Name

        </Typography>

        <br />

        <Typography component=”p”>

          {description.length > 150

            ? `${description.substr(0, 100)}...`

            : description}

        </Typography>

      </CardContent>

    </Card>

  );

};

export default withStyles(styles)(Company);

2. Export the ‘Company’ component as default by creating an 

‘index.js’ file:

import Company from ‘./Company’;

export default Company; 

CREATING THE COMPANY LIST COMPONENT
Next, create a CompanyList component to retrieve the list of 

company objects from the Jahia server.

To create the CompanyList component:

1. Create a CompanyList.jsx file in src/components/

CompanyList with the following content:

import React from ‘react’;

import {withStyles} from ‘@material-ui/core’;

import GridList from ‘@material-ui/core/GridList’;

import GridListTile from ‘@material-ui/core/GridListTile’;

import Company from “../Company“;

const styles = theme => ({

  root: {

    display: ‘flex’,

    flexWrap: ‘wrap’,

    justifyContent: ‘space-around’,

    overflow: ‘hidden’,

Code continued on next pageCode continued on next column



7 BROUGHT TO YOU IN PARTNERSHIP WITH

GETTING STARTED WITH HEADLESS CMS

    backgroundColor: theme.palette.background.paper,

  },

  gridList: {

    paddingTop: ‘12px’,

    width: 1020,

    height: 660,

  },

});

const CompanyList = ({classes}) => {

  const title = ‘Company name’;

  const description =

    ‘Lorem ipsum dolor sit amet, consectetur adipiscing 

elit. Vivamus a tortor hendrerit, dapibus libero eu, 

tincidunt nisl. Sed leo turpis, rutrum id condimentum quis, 

consequat eget enim. Nunc a tempor dui, eget tristique 

mi. Nunc ut ultrices sem, vitae posuere erat. Nulla 

sollicitudin blandit nunc, vel scelerisque orci vehicula eu. 

Nam sit amet sapien lectus.’;

  const image = ‘http://via.placeholder.com/300x120’;

  return (

    <div className={classes.root}>

      <GridList

        className={classes.gridList}

        justify=”center”

        cellHeight={300}

        cols={3}

        spacing={32}

      >

        <GridListTile>

          <Company

            title={title}

            description={description}

            image={image}

          />

        </GridListTile>

      </GridList>

    </div>

  );

};

export default withStyles(styles)(CompanyList);

Note: Ensure you save the file.

2. Create an index.js file in the same folder with the      

following contents:

import CompanyList from ‘./CompanyList’;

export default CompanyList; 

3. In the App.js file, add the import for the new CompanyList 

component at the top of the file:

import CompanyList from ‘./CompanyList’; 

4. Then replace:

</AppBar>

</React.Fragment> 

With:

</AppBar>

    <Grid container> 

        <Grid item xs={12}> 

            <Paper> <CompanyList/> </Paper>

        </Grid>

    </Grid> 

</React.Fragment>

BUILDING QUERIES WITH GRAPHIQL
Next, use GraphiQL to explore Jahia GraphQL queries before 

integrating them in your app. This example shows how to execute 

queries on the nodesByQuery query field.

To build queries with GraphiQL:

1. Open GraphiQL by navigating to the Jahia tools at http://

localhost:8080/tools. Then select GraphiQL at the lower left.

Note: You can use the Documentation Explorer to explore the 

Jahia GraphQL API. Open the explorer by selecting Docs in the                   

upper-right corner.

2. Execute the following query on the nodesByQuery             

query field:

{

  jcr(workspace: LIVE) {

    nodesByQuery(

      query: “SELECT * FROM [jdnt:company] as results 

               WHERE ISDESCENDANTNODE(results, 

                   ‘/sites/ digitall/’)”

      queryLanguage: SQL2

    ) {

      nodes {

        uuid

        name

      }

    }

  }

}

Note: You are using an SQL2 query to retrieve the data. If you receive a 

login exception, make sure you are properly logged into the CMS first.

3. Next, add properties to the query:

{

  jcr(workspace: LIVE) {

    nodesByQuery(

      query: “SELECT * FROM [jdnt:company] as results 

        WHERE ISDESCENDANTNODE(results, 

            ‘/sites/ digitall/’)”

      queryLanguage: SQL2

    ) {

      nodes {

        uuid

        name

        properties {

          name

Code continued on next page

http://localhost:8080/tools
http://localhost:8080/tools


8 BROUGHT TO YOU IN PARTNERSHIP WITH

GETTING STARTED WITH HEADLESS CMS

          value

        }

      }

    }

  }

}

4. The internationalization (i18n) properties are not returned 

unless you specify a language with which to retrieve them. For 

example, modify the query to look like this:

{

   jcr(workspace: LIVE) {

      nodesByQuery(

         query: “SELECT * FROM [jdnt:company] as results

          WHERE ISDESCENDANTNODE(results,

              ‘/sites/ digitall/’)”

         queryLanguage: SQL2

      ) {

         nodes {

            uuid

            name

            properties(language: “en”) {

               name

               value

            }

         }

      }

   }

}

5. Notice that the query generates too much data. Modify the 

query to only retrieve the properties that you need:

{

   jcr(workspace: LIVE) {

      nodesByQuery(

         query: “SELECT * FROM [jdnt:company] as results

                WHERE ISDESCENDANTNODE(results,

                    ‘/sites/digitall/’)”

         queryLanguage: SQL2

      ) {

         nodes {

            uuid

            name

            title: displayName(language: “en”)

            description: property(name: “overview”,

                    language: “en”) {

                        value

                    }

                    thumbnail: property(name: “thumbnail”,

                        language: “en”) {

                        url: refNode {

                            path

                        }

                    }

                }

            }

        }

}

CONNECTING TO GRAPHQL USING APOLLO CLIENT
Next, add the Apollo GraphQL client library so you can connect to 

Jahia’s GraphQL API.

To add the Apollo GraphQL client library:

1. From the root of the project, execute the following commands 

on the command line:

yarn add react-apollo

yarn add apollo-cache-inmemory

yarn add apollo-client

yarn add apollo-client-preset

yarn add apollo-link-rest

yarn add graphql 

2. In App.js file add:

//...

import {ApolloProvider} from ‘react-apollo’;

import {ApolloClient} from ‘apollo-client’;

import {HttpLink} from ‘apollo-link-http’;

import {InMemoryCache} from ‘apollo-cache-inmemory’;

const JWTDXToken = ‘JWT_DX_TOKEN’;

const httpLink = new HttpLink({

  uri: ‘http://localhost:8080/modules/graphql’,

  headers: {

    Authorization: `Bearer ${JWTDXToken}`

  }

});

const client = new ApolloClient({

  link: httpLink,

  cache: new InMemoryCache()

});

3. Then modify the render body to the following:

(<React.Fragment>

  <ApolloProvider client={client}

    <CssBaseline />

    <AppBar position=”static” color=”default”>

      <Toolbar>

        <Typography variant=”title” color=”inherit”>

          Companies

        </Typography>

      </Toolbar>

    </AppBar>

    <Grid container>

      <Grid item xs={12}>

        <Paper>

          <CompanyList />

        </Paper>

      </Grid>

    </Grid>

  </ApolloProvider>

</React.Fragment>); 

4. Next, create a container for the CompanyList component 

Code continued on next column Code continued on next page



9 BROUGHT TO YOU IN PARTNERSHIP WITH

GETTING STARTED WITH HEADLESS CMS

that will fetch company data using GraphQL. Create a 

ContainerList.container.jsx in src/components/

CompanyList and add the following imports:

import React from ‘react’;

import {Query} from “react-apollo”;

import gql from ‘graphql-tag’;

import CompanyList from ‘./CompanyList’; 

5. Now declare a query for retrieving all available companies:

const COMPANIES_QUERY = gql`

query CompaniesListQuery($language: String) {

   jcr(workspace: LIVE) {

      nodesByQuery(

         query: “SELECT * FROM [jdnt:company] as results 

                WHERE ISDESCENDANTNODE(results, 

                    ‘/sites/ digitall/’)”

         queryLanguage: SQL2

      ) {

         nodes {

            uuid

            title: displayName(language: $language)

            description: property(name: “overview”, 

                    language: $language) {

                        value

                    }

            thumbnail: property(name: “thumbnail”, 

                    language: $language) {

                        url: refNode {

                            path

                        }

                    }

         }

      }

   }

}

`;

6. Next, define the functional CompanyListContainer 

component that uses the previously imported Query 

component to fetch and render the CompanyList:

const CompanyListContainer = () => {

  const variables = {

    language: ‘en’,

  };

  const generateURL = path => {

    return `http://localhost:8080/files/ 

live${path}?t=thumbnail2`;

  };

  return (

    <Query

      query={COMPANIES_QUERY}

      variables={variables}

      fetchPolicy=”network-only”

    >

      {({loading, data}) => {

        let companies = [];

        if (data && data.jcr && data.jcr.nodesByQuery) {

          //Build the company data as expected by the 

Company component

          data.jcr.nodesByQuery.nodes.forEach(node => {

            companies.push({

              id: node.uuid,

              title: node.title,

              description: node.description.value,

              image: generateURL(node.thumbnail.url.path)

            });

          });

        }

        return (

          <CompanyList

            loading={loading}

            companies={companies}

          />

        );

      }}

    </Query>

  );

};

export default CompanyListContainer;

7. Update the existing index.js so that 

CompanyListContainer is the default export. Then change:

import CompanyList from ‘./CompanyList’; 

To:

import CompanyList from ‘./CompanyList.container’; 

8. Lastly, update the Company component to make data display 

dynamically. To do so, change:

<CardContent>

  <Typography component=”h1” variant=”display1”>

    Company Name

  </Typography>

  <br />

  <Typography component=”p”>

    {description.length > 150

      ? `${description.substr(0, 100)}...`

      : description}

  </Typography>

</CardContent>;

To:

<CardContent>

  <Typography variant=”title”>{title}</Typography>

  <br />

  <Typography component=”div”>

    <p

      dangerouslySetInnerHTML={{

        __html:

          description.length > 150

            ? `${description.substr(0, 100)}...`

            : description,

Code continued on next column Code continued on next page



10 BROUGHT TO YOU IN PARTNERSHIP WITH

GETTING STARTED WITH HEADLESS CMS

      }}

    />

  </Typography>

</CardContent>;

Now you have a base JavaScript application that retrieves content 

from Jahia using GraphQL and uses React and React Material to 

display the content.

SETTING UP AUTHORIZATION
By default, Jahia’s REST and GraphQL API are closed even if nodes 

have public read permissions. The APIs are closed for security 

reasons. To open the API for use in your application, you must 

configure Jahia’s security filter module to allow public access. You 

can find more information about the security filter module here: 

https://github.com/Jahia/security-filter

To make the data publicly accessible:

1. Add the org.jahia.modules.api.permissions-myapp.

cfg Jahia configuration file to the digital-factory-data/

karaf/etc folder with the following content:

permission.myapp.api=graphql

permission.myapp.scope=myapp

permission.myapp.

nodeType=jnt:news,jnt:contentFolder,rep:root

permission.myapp.pathPattern=/,/sites/[^/]+/contents/.*,/

sites/[^/]+/files/.* 

The scope setup here requires creating a JWT token when we 

integrate authorization in the Apollo Client in the JavaScript 

code. Please be aware that the value of permission.myapp.

pathPattern here should match the node paths you will access.

2. You must also create an org.jahia.modules.graphql.

provider-myapp.cfg file for the CORS authorization with 

the following content:

http.cors.allow-origin=http://localhost:3000 

3. In Jahia, navigate to tools at http://localhost:8080/tools. Then 

select Jahia API security config and filter : jwtConfiguration 

and create a new JWT Token using the following settings:

Scopes : myapp

Referrer : (empty)

IPs : (empty) 

4. Click Save and copy the generated token. Replace the example 

JWT_DX_TOKEN value with the copied token.

CREATING CONTENT USING CONTENT AND MEDIA MANAGER
Next, create and publish sample content from Content and Media 

Manager so you have content to browse and display in your 

JavaScript application.

To create and publish sample content:

1. In Jahia, click the Jahia logo in the upper-left corner to open 

the Jahia menu. Then select Content and Media Manager. 

2. Select Browser Folders, then click + Create > New content 

folder. Create a new folder named my-app. 

3. In the new folder, click + Create > New content. To create a 

company entry, select Content:jahiademo > Company and 

click OK.

4. Enter a title, industry, headline, and overview.                            

The following example shows sample text entered in Content 

and Media Manager.

https://github.com/Jahia/security-filter
http://localhost:8080/tools


11 BROUGHT TO YOU IN PARTNERSHIP WITH

GETTING STARTED WITH HEADLESS CMS

5. Publish the folder that you created, and your content is ready 

to be queried. 
Wrapping Up
In this Refcard tutorial, you:

• Created a React application.

• Used Content and Media Manager to add sample content to 

your app.

• Used GraphiQL to execute GraphQL queries and browser 

schema.

• Set up a basic Apollo Client to perform GraphQL queries to 

Jahia.

• Set up basic authorization.

• Styled the app’s UI using React Material.

• Created a component to retrieve news objects from Jahia.

• Used GraphQL field aliases to improve property retrieval.

Learn more about Content and Media Manager in the Academy.

Devada, Inc. 

600 Park Offices Drive

Suite 150

Research Triangle Park, NC 27709

888.678.0399     919.678.0300

Copyright © 2019 Devada, Inc. All rights reserved. No part of this 

publication may be reproduced, stored in a retrieval system, or 

transmitted, in any form or by means electronic, mechanical, 

photocopying, or otherwise, without prior written permission 

of the publisher.

Written by Serge Huber, CTO 
Serge Huber is the Chief Technology Officer (CTO) and co-founder at Jahia (http://www.jahia.com). Serge has 
more than 30 years of experience in developing digital experience solutions in various technologies, including 
AR and VR, and is constantly striving to find new ways to build high-quality and high-performance software. 
He has experience in building high visibility, mission-critical applications for large customers (including 
HomeAway, BNP Paribas, Sodexo, and the European Parliament). He now oversees the future technical 
development of Jahia’s software and manages the interaction with open-source communities such as the 
Apache Foundation. He is a VP and the initiator of Apache Unomi and a committer on the Apache Jackrabbit 
Project. He still considers himself primarily a geek and enjoys talking at events like Java One, ApacheCon, 
UX+Dev Summit, and more. 

DZone, a Devada Media Property, is the resource software 

developers, engineers, and architects turn to time and 

again to learn new skills, solve software development 

problems, and share their expertise. Every day, hundreds 

of thousands of developers come to DZone to read about 

the latest technologies, methodologies, and best practices. 

That makes DZone the ideal place for developer marketers to 

build product and brand awareness and drive sales. DZone 

clients include some of the most innovative technology and 

tech-enabled companies in the world including Red Hat, 

Cloud Elements, Sensu, and Sauce Labs.

http://innovate.tricentis.com/forrester-devops
https://www.jahia.com/forrester-report

