
Extending GraphQL
schemas using Jahia
Serge Huber, Jahia CTO & Co-Founder

Context

OSGi

https://www.osgi.org

Java framework

Hot deployment of modules

Used in many domains

3

https://www.osgi.org

GraphQL

https://graphql.org/

Open Source

Query language for APIs

Flexible

4

https://graphql.org/

How does this work together

GraphQL Gateway

GraphQL Extension 1

GraphQL Extension 2

5

Federation VS Stitching

What is schema stitching?

“ Schema stitching is the process of creating a single GraphQL schema from

multiple underlying GraphQL APIs. “

So, what’s the problem?

• Monolithic

• Multiple requests

• “Glue” code

• Extend query only

8

Maybe better with a little example

type Movie {
id: ID!
title: String
overview: String

}
type Query {

movieById(id: ID!): Movie
}

9

Let’s extend it

type Actor {
 id: ID!
 name: String
}
type Query {
 actorById(id: ID!): Actor
 actorsByMovieId(id: ID!): [Actor]
}

10

Result

type Query {
movieById(id: ID!): Movie
actorById(id: ID!): Actor
actorsByMovieId(id: ID!): [Actor]

}

11

What is schema federation?

The same… but different!

12

● Build declarative graph

● Code can be split

● Graph are easy to consume

Back to our example

type Movie {
id: ID!
title: String
overview: String

}
type Query {

movieById(id: ID!): Movie
}

13

With its extension

extend type Movie {
 actors: [Actor]
}
type Actor {
 id: ID!
 name: String
}

14

Federation with Java and OSGi

Why?

Because of dynamic federation:

OSGi modules with support for
GraphQL federation make it
possible to evolve a GraphQL
schema at runtime.

16

GraphQL schema evolution
rules

• Never remove a field
• Never change a field’s arguments

• Add new fields if new arguments or semantics of a field must

change

• No need to version GraphQL schemas, unless major rewrites

happen

• Don’t split schemas, prefer aggregation layers instead

Let get cracking!

3 modules retrieving movie data from TMDB and IMDB:

● Team A provides a new entry tmdb in query and add a new type Movie

● Team B needs to extend the Movie type with an Actor type to get the

actors list of a movie

● Team C needs to enrich the movie data with information coming from

another API

Common part

Registering the extension

19

Common part

Declaring the extension

Team A

21

Team A

22

Team A

23

Team B

24

Team B

25

Team B

26

Team C

27

Team C

28

Summary

• Extend an existing schema

• Not overload the query type

• Enrich an existing scheme with data from another API

• Split the code

29

With schema federation and OSGi, we are able to:

Resources

https://www.jahia.com/jcontent

https://github.com/Jahia/graphql-core

https://github.com/DameniMilo/graphql-tmdb-provider

https://github.com/DameniMilo/graphql-tmdb-extension

https://github.com/DameniMilo/graphql-imdb-extension

https://www.jahia.com/jcontent
https://github.com/Jahia/graphql-core
https://github.com/DameniMilo/graphql-tmdb-provider
https://github.com/DameniMilo/graphql-tmdb-extension
https://github.com/DameniMilo/graphql-imdb-extension

Useful links

https://en.wikipedia.org/wiki/OSGi

https://karaf.apache.org/

https://unomi.apache.org/

https://blog.apollographql.com/apollo-federation-f260cf525d21

https://www.apollographql.com/docs/graphql-tools/schema-stitching/

https://en.wikipedia.org/wiki/OSGi
https://karaf.apache.org/
https://unomi.apache.org/
https://blog.apollographql.com/apollo-federation-f260cf525d21
https://www.apollographql.com/docs/graphql-tools/schema-stitching/

THANK YOU!

